TVUSD	
Algebra	1

Name		
Partner		

Modeling with Linear, Exponential and Quadratic Functions

A)	Pair	up	with	a	partner	and	a	device.
----	------	----	------	---	---------	-----	---	---------

- B) Go to student.desmos.com. (Do not login with Google)
- C) Sign in with BOTH your names. (e.g. Alex and Maria = AlexMaria)
- D) Class Code: _____
- E) There is no need to save your work online. You only need to record your results on the handout given to you.

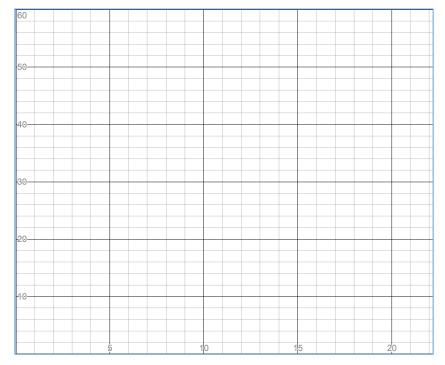
Slide 1: Card Sort

Linear	Exponential	Quadratic
Equation	Equation Equation	
x y	x y	x y
10 -8 -6 -4 -2 2 4 6 8 10 -6 - 4 -6 - 8 -10 - 8 -6 - 10 - 8 - 10 - 10 - 10 - 10 - 10 - 10	10 ¹ 8 6 4 2 - 10 -8 -6 -4 -2 2 4 6 8 10 -2 -4 -6 -8 -10	10 8 6 4 2 -10 -8 -6 -4 -2 2 4 6 8 10 -2 -4 -6 -8
Dot Pattern	Dot Pattern	Dot Pattern

Slides 2-4: Pattern Justifications

Slides 5-7: Equations from Tables

M(h) = _____


h	M(h)
0	
1	10
2	15
3	20
4	25
5	
	1025

$D(n) = _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$
--

n D(n)		
160	D(n)	n
	160	
0		0
1 10	10	1
2 5	5	2
3 2.5	2.5	3
4 1.25	1.25	4
5		5

S	A(s)
0	
1	10
2	40
3	90
4	160
5	
	1440

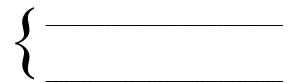
Slides 8-10: Jackson & Kendall

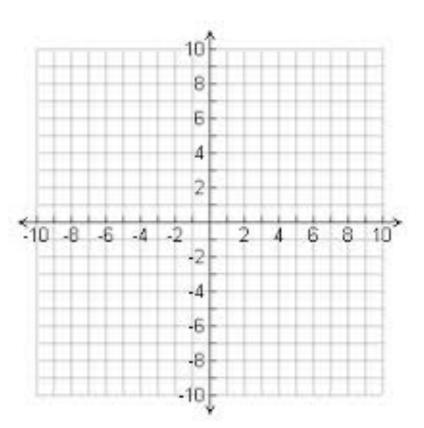
When will Jackson and Kendall have the same amount?

____ months

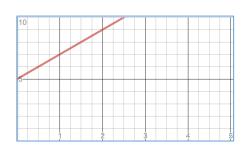
What will that amount be?

\$_____

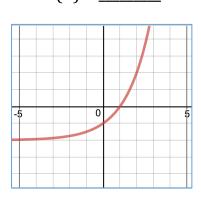

When will Jackson have \$4 more than Kendall?

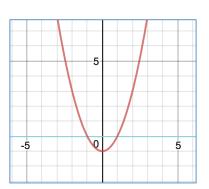

_____ & ____ months

When will Kendall have \$4 more than Jackson?


_____ months

Slide 11: Create a System

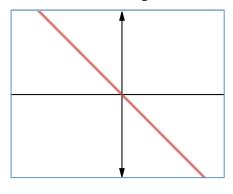


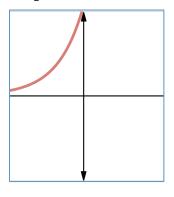


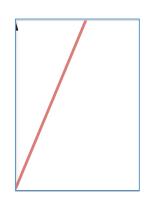
Slides 12-17: Reading Values from a Graph

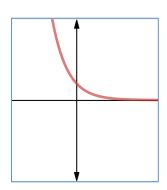
$$E(5) = ____$$

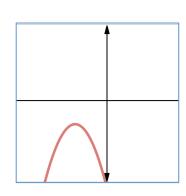
Slides 18-19: Pairing the Range


$$y = 2x - 3$$


$$y = 2x - 3$$


$$y = 2^x - 3$$
 Range = {


$$y = -(x - 1)^2 - 3$$
 Range = {


Slides 20-21: Equations from Graphs

